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List of terms 
  
 DF – dual-fuel engine, the gaseous main fuel is ignited by the pilot diesel fuel; 

CI – compression-ignition (or diesel) engine; 
ICE – internal combustion engine; 
OTS – open thermodynamic system; 
SI – spark-ignition engine; 
Project – the separate file for input data and calculations results for the current 

engine; 
Template – the pre-setup for calculations, example of the initial data setup for 

given type of engines; 
User – the registered customer of software  
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Dual-fuel engines: 
• premixed gas-air mixture; 
• gas direct injection.  

2. Stroke type: 
Four-stroke 
Two-stroke: 

• loop-scavenging; 
• uniflow-scavenging; 
• opposed-piston scavenging, 

Hybrid-stroke: 
• eight-stroke (1 combustion for 4 crank revolutions); 
• two-four-stroke switching.  

3. Type of crank mechanism: 
• conventional crank mechanism; 
• ellipsograph-type crank mechanism; 
• random piston motion law, 

4. Supercharging: 
Single-stage: 

• turbocharger; 
• driven supercharger, 

Register : 
• turbochargers; 
• mechanical superchargers; 
• turbocharger + mechanical supercharger,  

Two-stage: 
• turbochargers for 1st and 2nd stage; 
• turbocharger for the 1st stage and mechanical charger for the 
2nd stage; 
• turbocharger for the 2nd stage and mechanical charger for 
the 1st stage.  

5. Transient simulation: 
Type-of-load apply: 

• vehicle application: 
mechanical gearbox; 
automatic gearbox; 

variator gearbox, 
• ship application: 
  direct & geared fixed pitch propeller; 
   direct & geared controllable pitch propeller; 
  electric gear; 
• test-bench application. 

Turbocharger control: 
waste-gate dynamics; 
variable turbine’s nozzle dynamics  
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Table 1.2.1 

Gas parameters in critical point, used in Berthelot equations 
Gas pcrit, MPa Tcrit, K 
N2 3.39 126.05 
O2 5.04 154.35 
H2 1.3 33.25 
CO 3.5 134.15 
CO2 7.35 304.15 
H2O 22.13 647.35 
CH4 4.626 190.77 
C3H8 4.32 370 

CH3OH 8.103 512.65 
C2H5OH 6.3 514.15 

Air 3.77 132.45 
Petrol 1.633 570.3 

Diesel oil 1.63 733 
 

The specific heat of the gases mixture is calculated by Dalton’s law, while the 
specific heat of each component is given by polynomial regressions, kJ/(kmole·K): 

 
Air: cvμ = 5,52411 ·10-19 T 6 – 5,726799 ·10 -15 T 5 + 2,375597 ·10 -11T 4 –     – 

4,951694  ·10-8 T 3 + 5,1761 ·10 -5 T 2 – 1,9099 ·10 -2 T + 23,005, R 2 =0,99999; 
CO2: cvμ = –3,5902 ·10-19 T 6 + 4,11717 ·10 -15 T 5 – 1,9643 ·10 -11 T 4 +            

+ 5,14242 ·10-8 T 3 – 8,2174 ·10 -5 T 2 + 8.2126 ·10 -2 T + 10.333, R 2 =1,0; 
CO: cvμ = 6,66905 ·10-19 T 6 – 6,87834 ·10 -15 T 5 + 2,838962 ·10 -11 T 4 –            

– 5,892362 ·10-8 T 3 + 6,15177 ·10 -5 T 2 – 2,36488 ·10 -2 T + 23,739, R 2 =0,99998; 
H2: cvμ = –9,269363 ·10-19 T 6 + 8,875943 ·10 -15 T 5 – 3,321498 ·10 -11T 4 +         

+ 6.043425 ·10-8 T 3 – 5.368376 ·10 -5 T 2 + 2.34933 ·10 -2 T + 16.878, R 2 =0,99981; 
N2: cvμ = 4,062159 ·10-19 T 6 – 4,487468 ·10 -15 T 5 + 1,993208 ·10 -11 T 4 –           

– 4,470124 ·10-8 T 3 + 5,053716 ·10 -5 T 2 – 2,08783  ·10 -2 T + 23,56, R 2 =0,99999; 
H2O: cvμ = – 4,897476 ·10-20 T 6 + 3,447949 ·10 -17 T 5 + 2,656956 ·10 -12T 4  –   

– 1,366663 ·10-8 T 3 + 2,443866 ·10 -5 T 2 – 5,50647 ·10 -3 T + 25,104, R 2 =0,99999; 
O2: cvμ = 1,211498 ·10-18 T 6 – 1,142445 ·10 -14 T 5 + 4,197528 ·10 -11 T 4 –           

– 7,461907 ·10-8 T 3 + 6,280219 ·10 -5 T 2 – 1,49757 ·10 -2 T + 21,623, R 2 =0,99984, 
where R2 – correlation factor.  

 
Generally, for each open thermodynamic system the single-zone model is ap-

plied, that means the whole volume of the system is considered as homogeneous mix-
ture of gases. But for several cases shown on Fig. 1.2.3 two-zone model is also im-
plemented:  

1. During combustion period to predict the burned gases and fresh charge temper-
atures for NOx and CO formation calculation (a, b on Fig. 1.2.3). 

2. During scavenging period for two-stroke engines to predict correctly gas ex-
change processes (c on Fig. 1.2.3). 



3. To consider burned gases reflux from the cylinder into intake receiver (d on 
Fig. 1.2.3).     

 
In the two-zone model the thermodynamic system is virtually divided into two 

interacting thermodynamic systems. The general concept for two-zone model is the 
equivalence of pressure for both zones and impenetrable flexible boundary surface 
between them. Basic equations are based on the first law of thermodynamics: 
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where index “I” refers to the burned gases zone, and index “II” – to the fresh mixture 
zone, δQI-II/dφ – heat transfer rate between zones, dII-II/dφ – enthalpy transfer rate 
between zones. 
 These equations are used together with general single-zone equation, which is 
used to find the pressure for the next time layer.  
 
 The mass flow between interacting thermodynamic systems is calculated on the 
traditional quasi-steady method coupled with prof. Orlin approach to consider un-
steady effects. 
 The quasy-steady equations for gas flow velocity wstatic from the volume with 
higher pressure “1” to the volume with lower pressure “2” are: 
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where k1 is the adiabatic exponent, “*” indicates total parameters.  
To consider the unsteady phenomena the pulse conservation equation is used: 
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It is converted according to prof. Orlin method [1] and expresses gas flow ac-

celeration: 

L

wwww

d
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2
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
, 

where L is the “active” pipe length. 
The active pipe length is to be set by the user for intake and exhaust 

valves/ports (see section 2.5), but for many other cases (turbine, compressor, inter-



cooler, etc) it is assumed automatically (usually divisible by channel’s equivalent 
flow diameter). 

The mass flow is calculated as: 
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where μA – the effective flow area of the channel, μ – discharge coefficient.   
 

 Heat transfer calculations are based on Newton’s law of cooling for quasi-
steady heat transfer model. According to this model the wall temperatures for both 
hot and cold side are assumed constant and equal to their average values. Detailed 
information about models for heat transfer is presented in section 2.2. 
 
 Heat release rate from fuel combustion is given by Wiebe equation for spark-
ignition engines and either Wiebe equation or by Razlejtzev mathematical model for 
compression-ignition engines (see section 2.4). Dual-fuel combustion is calculated 
with combined Wiebe-Razlejtzev model: the combustion of ignition fuel is calculated 
by Razleitzev model and the main fuel combustion is given by Wiebe equation. 
  
 Transient simulation of engine operation is based on consecutive (cycle-by-
cycle) synthesis of engine’s indicated process. The mechanical dynamics of engine 
and turbocharger is set with following equations: 
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where n, nTC – crankshaft and turbocharger rotor speed, Pe, Pload, Pturb, Pcompr – en-
gine’s brake power, power of the load resistance, power of turbine and compressor 
correspondently, Jrot, JTC – reduced moment of inertia of engine, power consumer and 
transmission referred to the crankshaft speed and turbocharger’s rotor moment of in-
ertia. 
 Fuel injection and combustion for transient engine operation is to be set by the 
User with control maps *.csv files. For detailed information see section 2.7.       
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Click on the “Start working!” button redirects the User to the start-working 
page, where he/she can create the first Project (by click on the button “Create new 
Project”).   

To create the new Project the User states its name, short description and choos-
es the template for the Project from the selection list at the bottom. Templates are the 
set of calculations pre-setups for different types of ICE. Choosing the correct tem-
plate helps to make the initial model setup much easier. Templates for two- and four-
stroke, low-, medium and high-speed, compression ignition, spark-ignition and dual-
fuel engines are currently available. 

Note, that the limit for project name is 24 symbols. Each Project gets unique id 
number, so the User can create several Projects with the same project name. When 
the Project is created it gets reserved space in the Database, so the every change of 
any parameter is stored immediately in the Database, and there is no need for the Us-
er to save changes into the Project manually. At the same time, the undo/redo option 
is not available.    
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 Table 1.5.1 contains information about the structure of .csv files for several 
cases, mentioned above. 

 
Table 1.5.1 

Structure of .csv files 

Case: x1 x2 x3 x4 x5 x6 

Piston kine-
matics* 

Param. φ V/Vs     

Units c.a.d. -     

Valve relative 
lift* 

Param. φ 
 .vh int , 

exh.vh

 
   

Units c.a.d. -     

Port relative 
area* 

Param. φ 
 .pAint , 

exh.pA  
    

Units c.a.d. -     

Fuel injection* 
Param. φ σ     

Units c.a.d. -     

Control maps 
for CI engine 

Param. ncrank qfuel φinj φinj.start   

Units rpm g c.a.d. c.a.d.   

Control maps 
for SI engine 

Param. ncrank χthr φcomb.start φcomb mcomb α 

Units rpm - c.a.d. c.a.d. - - 

Transient data 
from experi-
ment 

Param. τ 

ncrank, 
nTC, ps, 
pt, Gint, 

pmax 

    

Units s 

rpm, 
rpm, 
kPa, kPa, 
kg/s, kPa

    

φ – crank angle revolution, V/Vs – relative displacement volume,  σ – relative injected 
fuel mass, ncrank  – crankshaft speed, qfuel – amount of fuel, injected per cycle, 
 φinj.start – fuel injection start, χthr – throttle pressure drop, φcomb.start – start of combus-
tion, φcomb – duration of combustion, mcomb – Wiebe function exponent, α – air excess 
ratio, τ – time from transient start,  nTC  – supercharger speed, ps, pt – intake receiver 
and exhaust manifold pressures, Gint - !intake mass flow, pmax – maximum pressure.     
* - the range of φ is to be [0, 360/χ], including φ = 0 and φ = 360/χ (χ – stroke factor, 
equals 0.5 for four-stroke and 1.0 for two-stroke engines). 

 
The .csv file for performance maps of the mechanical compressor or the turbo-

charger has its special structure and is to be formed with special software for generat-
ing, interpolating and extrapolating of the compressor and turbine characteristics.   
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2.2. Heat transfer setup. 
 
The “Heat-transfer” page serves to configure the engine friction losses, heat 

flow from the intake receiver, exhaust manifold and incylinder fluids to the corre-
sponding boundary walls. 

Engine’s friction losses include: friction between the piston rings, piston skirt 
and cylinder wall; friction in the wrist pin, big end, crankshaft, and camshaft bear-
ings; friction in the valve mechanism; friction in the gears, or pulleys and belts, 
which drive the camshaft and engine accessories and losses to drive engine accesso-
ries (the fan, the water pump, the oil pump, the fuel pump, the generator, etc.). 

All the friction losses dissipate as the heat and then are rejected to the cooling 
agents (air, water or oil). 

The pumping work of the gas-exchange strokes of the four-stroke engines and 
the work of driving the mechanical supercharger are excluded from the friction losses 
setup and considered separately. 

The following equation for friction mean effective pressure is utilized: 

1000

nc
pbap fr

zfrfrfr  , 

where afr, bfr, cfr – empirical coefficients: afr – considers the static friction losses and 
solid friction components; bfr – helps to estimate the impact of incylinder maximum 
gas pressure on the friction losses value; cfr – is used for correlation of the friction 
losses with the engine speed. 
 Approximate values of the coefficients are given in the table 2.2.1. 
 

 Table 2.2.1 
Friction equation coefficients  

Engine type 
afr bfr cfr 

kPa kPa/MPa kPa/rpm 
Low-speed CI and dual-fuel 18…50 3…5 15…40 
Medium-speed CI and dual-fuel 40…90 4…7 30…55 
High-speed CI 45…95 4…8 30…60 
High-speed SI 35…75 4…8 20…50 

 
The incylinder heat transfer calculation is based on 1-D quasy-steady simpli-

fied approach. Newton's law of cooling is used for calculations of instantaneous heat 
flow dQwall to the wall: 

  τα dTTFdQ wallgaswall  , 

where αgas – heat transfer coefficient from incylinder gases to the cylinder wall, F –  
wall surface area, Twall – the wall surface temperature.    

For heat transfer coefficient calculation the Woschni equation is used [2]: 
   

,
1000

10
α

8,0

212,00,53

0,8

gas 






 


pV

TVpp
СсС

DT

p
A smot

m

cyl
 

where A, C1, C2 – coefficients, pmot – incylinder pressure at motored running condi-
tion.   



 Coefficient A is in the range of 90…128, tending to decrease with the lower 
engine speed. Coefficients C1 and C2: 

C1= 6.18 + 0.417cτ/cm – for gas exchange processes; 
C1= 2.28 + 0.308cτ/cm – for compression and combustion processes; 

  C2 =  6,22 K-1 – for indirect combustion systems (swirl chamber, pre-chamber); 
 C2 =  3,24 K-1 – for quiescent combustion chamber, 
where cτ – the tangential velocity of the incylinder vortex (could be assumed cτ ≈ 0 
for four-stroke engines without vortex generators at the intake ), cm – mean piston 
speed.   
 

Table 2.2.2 
Values of coefficient A of Woschni equation 

Engine type A 

Low-speed CI and dual-fuel 60…100 
Medium-speed CI and dual-fuel 90…130 
High-speed CI 100…140 
High-speed SI 120…220 

 
The average wall surface temperature Twall.m for cylinder head, piston head and 

manifolds is calculated on the assumption of quasy-steady heat-transfer process. The 
value of Twall.m is assumed constant for the entire operating cycle (the oscillations in 
the range of 5…40 ºC are neglected), while the heat transfer coefficient from gases to 
wall and the temperature of the gases are assumed as resulting values.  The following 
equation is used: 

 
mas

wgas.resm
gas.resmwall

TTk
TT

.g
. α


 . 

The resulting heat transfer coefficient for gases αgas.m and resulting gas temper-
ature Tgas.res are calculated for the entire operating cycle as: 

,dφα
720α

1 720

0.
 TT gas

mgas
gas.res ,dφα

720

1
α

720

0

.g  gasmas  

and the mean heat transfer coefficient from the gas and cooling fluid km is assumed on 
the basics of steady heat-transfer equations:  

 
 




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;α

;

. wall.mgas.resmgasm
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TTq

TTkq
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1
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1
1

w
wall

wall

wall

gas.res

m

R
k


  

where qm – specific heat flow; αw – resulting heat transfer coefficients from  cooling 
surface to cooling fluid respectively; Tw – resulting cooling fluid temperature; δwall – 
wall thickness; Rwall – wall thermal resistance.  
 
 For the cylinder liner the wall’s temperature gradient is considered. The simpli-
fied approach includes cutting the liner to a number of slices (N > 20) and calculation 
of the mean hot wall temperature for each slice separately with the same quasy-steady 
method, described earlier:     
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 The exhaust manifold average wall temperature is calculated identically as the 
temperatures of the incylinder surfaces, so the wall thicknesses, heat conductivities 
and additional thermal resistance due to deposites must be given by the User. 
 For the cooling side of engine’s parts the approximate values of heat transfer 
coefficients are given in table 2.2.3. 
 

Table 2.2.3 
Values of heat transfer coefficients for the cooling agents 

Type of 
cooling agent 

Сooling method 
αw, 

kW/(m2·K) 
Water Free convection 0.4…2.0 

Forced convection 1.0…4.0 
Nucleate boiling 2.0…10.0 

Antifreeze (wa-
ter/ethylene gly-
col 50/50) 

Free convection 0.3…1.5 
Forced convection 0.75…3.0 
Nucleate boiling 1.5…7.5 

Oil Spray cooling  0.2…2.0 
Circulation cooling 0.8…2.0 

Shake cooling 1.5…3.5 
Air Free convection 0.03…0.1 

Forced convection 0.05…0.5 
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Table 2.4.1 
Ranges of rated average injection pressure pinj, Sauter fuel droplets  

diameter d32 and injection duration φinj. 
 

Injection system type pinj, MPa d32, μm φinj, c.a.d 

In-line fuel injection pumps 40…130 14…19 18…25 
Distributor injection pumps 30…120 14…20 16…26 
Single-plunger pumps 80…240 12…18 20…34 
Unit-injectors 150…300 10…16 18…28 
Common rail accumulator in-
jection system 

120…300 10…16 18…30 

 
 Ignition delay prediction 
 For ignition delay prediction the modified Tolstov equation is used [6]: 
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e
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where B0, kn – coefficients, startinj
cylp . , startinj

cylT .  - pressure and temperature in the engine 

cylinder at the start of fuel injection, Ea – activation energy, CN – cetane number of 
the fuel. 
 The recommended values of B0, kn are given in table 2.4.2. 
 

Table 2.4.2 
Coefficients for Tolstov equation 

Rated crank speed, rpm kn B0 
          < 2500 0.00016 0.0000038 

> 2500 0.00018 0.000002 
 

 Razlejtzev combustion model 
 The predefined combustion model for compression-ignition engines is based 
on Razlejtzev equations of combustion kinetics, though the User can still choose the 
Wiebe combustion model, which has simpler setup. 
 Basic set of equations for Razlejtzev combustion model is as following [4]: 
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where σi represents the amount of fuel, injected during ignition delay, φinj.end – the 
moment of injection end, Δφk.ext – extension of the time for second equation usage, 
Δφcomb.end – end of the combustion process, ξa.c – function of air usage, ΔU.F – un-
burned fuel fraction. 
 



 The functions P0, P2, A0, A2 are calculated with the equations: 
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where H is the swirl number (ratio between the rotational speed of the fresh charge 
swirl in the cylinder at the end of compression and the crankshaft rotational speed), 
a0, a1, a2, b0, mcomb – coefficients (see table 2.4.3).  
 

Table 2.4.3 
Approximate values for Razlejtzev combustion model setup 

Engine type a0  
· 10 -3 

a1 

· 10 2 
a2 b0 mcomb H mY 

n = 50…250 rpm, 
two-stroke 

5…12 5…10 10…15 0.1…0.2 0.6…0.8 1.5…3 0.3…0.65 

n = 400…750 rpm, 
four-stroke 

8…15 4…9 8…13 0.05…0.15 0.5…0.7 1…1.1 0.45…0.7

n = 750…1500 rpm, 
four-stroke 

10…40 3…7 4…8 0.05…0.1 0.5…0.7 1…1.2 0.5…0.75

n > 1500 rpm, 
four-stroke 

15…30 3…6 3…7 0.04…0.08 0.6…0.8 1.2…2 0.5…0.9

 
  The Razlejtzev combustion model considers combustion as the tree-stage pro-
cess, with the corresponding equation for each stage. These stages are:  

1) combustion of the fuel vapor formed during ignition delay,  
2) combustion during injection period,  
3) combustion after injection (afterburning). 

 The equations switch for each stage activates at the defined moments of time: 
when x = σi from the first stage equation to the second stage equation and when φ = 
φinj.end + Δφk.ext from the second stage equation to the third stage. 
 The extended period for second stage equation (combustion during injection) 
Δφk.ext can be set up with the Δφk and Δτk parameters. Generally at the full load Δφk = 
0, reaching up to 5…12 at idling, while Δτk is recommended to choose from 0.3 ... 0.8 
for direct fuel injection and from 0.5...0.9 for indirect fuel injection. 
 The afterburning process is mainly guided by the air usage function ζa.c which 
can be calculated from the following equation: 
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where Φz – relative combustion duration, ζa.c0, Φz0 – coordinates of the minimum 
point for the function ζa.c = ζa.c(Φz0). 
 The approximate values of ζa.c0, Φz0 could be taken from Fig. 2.4.7 and from 
table 2.4.4.   
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2.5. Toxic emissions models setup  
 
The mathematical models of NO, CO and Soot formation are built-in into the 

Blitz-PRO core as a separate module, which runs after the operation cycle simulation 
is successfully completed. 

 
2.5.1. NO and CO formation calculation 

 
Calculations of the NOx concentration at the exhaust gas are based on the 

Zeldovich mechanism for “thermal” nitric oxide (NO). This chained mechanism in-
cludes three equations:  

NNOON
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, 

where K1p, K1r, K2p, K2r, K3p, K3r – constants for direct and reverse chemical 
reactions.  
 First equation is the most important in terms of total NO formation kinetics. 
The equation for NO kinetics could be expressed as: 

][NO][HK[N][OH]K[NO][O]K][N][OK[NO][N]K][O][NK
dτ

d[NO]
33222121 rprprp  , 

where square brackets “[]” express the volumetric concentration of the corresponding 
matter. 
 Blitz-PRO currently utilizes the NO formation kinetic equation, which consid-
ers only first and second equations according to Zvonov’s approach [13]: 
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Notice, that eqK ]NO[]N][O[ 224  – is the equilibrium concentration of NO. 

Conversion of the equation into volumetric fraction units gives: 
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p ,                       (2.5.1)          

where p – incylinder pressure, bar, R = 8.3144 J/(mole·K) – gas constant,  
Tburned – temperature of the burned gases.  

The Arrhenius law equations are used for reaction rate constants calculation:  









RT

E
AT aB expK , 

where A, B – empirical coefficients, Ea – activation energy. 
 The values of A, B could be chosen by the User from table 2.5.1. 
 
 
 



Table 2.5.1. 
Coefficients for reaction rate constants calculations 

Constant, А, cm3/(mole·s) B Ea, J/mole Source 

K1p, cm3/(mole·s) 

7·1013 0 316103 [7] 
1,36·1014 0 315600 [8] 
4,93·1013 0,0472 316480 [9] 
1,3·1014 0 317849 [10] 

K1r, cm3/(mole·s) 

3,2·1013 0 1670 [8] 
1,32·1013 0 0 [11, 12] 
1,6·1013 0 0 [9] 
1,55·1013 0 0 [7] 
2,8·1013 0 0 [10] 

K2p, cm3/(mole·s) 

1,33·1010 1 29600 [8] 
1,81·109 1,5 12560 [11] 
1.21·1013  29700 [13] 
1,48·108 1,5 23781 [9] 
6,4·109 1 26147 [10] 

K2r, cm3/(mole·s) 

3,2·109 1 163700 [7] 
3,6·1012 0 162300 [12] 
1,25·107 1,612 157800 [9] 
1,5·109 0 161848 [10] 

 
It is important to know the temperature and composition of burned gases to 

make the usage of the equation 2.5.1 for instantaneous NO concentration rate calcula-
tions possible. 

The temperature of the burned gases Tburned is calculated according to the two-
zone model for the combustion period. The working medium in the cylinder is as-
sumed as two-component system – “fresh charge” and “burned gases”, separated by 
the imaginable movable boundary. The pressure for both zones is assumed the same, 
while temperatures are calculated according to equations, described in section 1.2. 

The gas composition for the burned gases zone is calculated according to the 
professor Zvonov’s method [13]. According to this approach the burned gases are 
assumed as 18-components mixture of O, O2, O3, H, H2, OH, H2O, C, CO, CO2, 
CH4, N, N2, NO, NO2, NH3, HNO3, HCN. 

To find the concentration of each component the set of 14 balance equations 
together with 4 bound equations is used. This equations set is nonlinear and is solved 
numerically. 

The calculated concentration of CO at the end of combustion process is used as 
an output data for the “Report” page. So [CO] is calculated as equilibrium concentra-
tion of CO at this point.  
 

For diesel engines case the important parameter, which allows precise tuning 
of NO formation mathematical model, is αloc – the value of the local air excess ratio 
at the combustion zone. It is assumed, that αloc has linear dependence on the crank 
angle, reaching αloc = 1 at the end of combustion: 
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The resulting exhaust gases soot concentration referred to normal conditions is 
calculated by equation: 
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where φe.o – exhaust openning, c.a.d. 
 This value of the volumetric soot concentration is also converted to Bosch and 
Hartrige scales using the corresponding regressions. 
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 This set of equations completed with boundary conditions is solved with two-
stage predictor-corrector numeric method. The “dynamic” pipe length is divided by 
number of cells (from 10 to 50).  
 The complete 1-D approach provides more accurate results, but takes much 
more computational time for execution. 
 
 Manifolds friction losses setup 
 Although the 0-D quasy-steady model is utilized for intake and exhaust piping 
working processes synthesis, there is an ability to consider the friction losses in the 
intake receiver and exhaust manifold. The User can set the roughness for intake re-
ceiver and exhaust manifold inner walls Ra.int and Ra.exh. The additional frictional 
backpressure is calculated by: 
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For the rough inner surface: 
0635.025.0

1
2090Re,

Re

68
11.0λ 















  ifpipe  

pipe

a

d

R
  

where λpipe – coefficient of resistance, Lpipe – length of the piping, dpipe – inner diame-
ter of the pipe, wG  – gases average velocity, ρEG – gases density,  - relative rough-
ness, Ra – roughness of the pipe inner surface.    

Reynolds number for gases flow: 

;Re
G

pipeGdw


  

where νG – kinematic viscosity of gases. 
The calculated frictional backpressure in the exhaust manifold is added to the 

exhaust system pressure losses Δpt and is considered for the exhaust gases flow calcu-
lation through the gas turbine or through the outer pipe of exhaust system. At the 
same way the calculated frictional backpressure in the intake receiver is added to the 
air filter resistance Δpint.f and is considered for the intake air flow calculation through 
the air compressor or through the inlet pipe of intake system. 

 
 
 
Supercharger performance and charge air cooler setup 
For supercharged internal combustion engines the User should define the type 

and parameters of the supercharger. Blitz-PRO allows calculations for the mechani-



cally driven supercharger (with dynamic ore displacement type of the compressor) 
and for the turbocharger. 

The User has two options: to set the parameters of the supercharger (or turbo-
charger) manually or to use the supercharger’s performance maps. This choice trig-
gers the gas-exchange calculation mode. Usage of the performance maps provides 
much more accurate calculations.  

The parameters of supercharged air cooler are given by the temperature of the 
coolant at the air coolant enter Tw1.CAC and the efficiency of air cooler ηCAC, which is 
considered as:  

,
1

'

CACwk

sk
CAC TT

TT




  

where Tk – the air temperature at the compressor outlet, T’s – the air temperature at 
the air cooler outlet. 
 
 Please note, that supercharged air after the air cooler can be heated from the air 
receiver walls, so the average temperature of the air in the air receiver Ts is different 
to T’s.    
 
 Fig 2.6.4 shows the setup for mechanically driven supercharger for two cases: 
manual setup and setup with the performance maps.   

For mechanically driven supercharger the User should set the driving gear ra-
tio:  

,. n

n
i SC

gcmpr   

where nSC – the speed of supercharger rotor, n – the crankshaft speed. 
 In the case of manual setup, the User should set the adiabatic efficiency of the 
compressor, which is considered as: 
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where Tk
* – the total temperature at the compressor’s outlet. 

 To use the performance maps, the User should check this option from the 
checkbox and then either choose the corresponding performance maps from the list of 
maps or upload new performance map from file. 
 Fig. 2.6.5 shows an example of extrapolated performance maps for the me-
chanically driven compressor (Lysholm LYS2300AX). Performance maps are pre-
sented with two maps: compressor flow map and compressor efficiency map. 
 Compressor flow map presents the function Пcmpr = f(Gcmpr.ref, ncmpr.ref) as a set 
of the lines for constant referred speeds of the compressor rotor ncmpr.ref (isotahoes). 
Compressor efficiency map shows the function ηcmpr.ad = f(Gcmpr.ref, ncmpr.ref) as a set of 
isotahoes. The referred air flow and referred rotor speed are calculated by: 
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GG

ref
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where pint, Tint – pressure and temperature of air at the compressor inlet, pref, Tref – re-
ferred pressure and temperature (generally pref = 96 kPa, Tref = 303 K).   
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depend on the pressure drop ratio and gas temperature at the turbine inlet. The air 
pressure at the compressor outlet is also considered constant for the current operating 
cycle. So, please, for correct simulations use the performance maps of the super-
charger at the earliest opportunity. Fig. 2.6.9 shows the difference in simulation re-
sults for manual and performance maps supercharger setup. 
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  To consider heat inertia, assume the heat balance equation for engine part: 
Qh = Qc + ΔI, 

where Qh – the heat, taken from the hot source, Qc – the heat, rejected to the cold 
source, ΔI – the enthalpy, accumulated for part heating. 

The change in engine part enthalpy is considered in respect of the part tempera-
ture change ΔTm as: 

ΔI = cpmΔTm . 
The part temperature is assumed as average value between temperatures of hot 

surface Twall,h and cold surface Twall,c.: 
Tm = (Twall.h  + Twall.c)/2. 

So the heat balance equation could be expressed as: 
 
αhFh ( Th  -  (T i+1

wall.h  + T i
wall.h)/2)τ = αсFс ((T i+1

wall.c  + T i
wall.c)/2  - Tс )τ + cpm(T i+1

m - T i
m), 

where αh and αс – heat transfer coefficients from hot source to the hot wall and from 
the cold wall to cold source, Fh and Fс – areas of the hot and cold surfaces of engine 
part,  Th and Tс – temperatures of the hot and cold source respectively, τ – the time of 
current operating cycle, i – number of calculated consecutive cycles.  

This equation is added with equations of heat transfer trough the part wall: 
 

Qc = (λ/δwall +1/Rwall)Fс( (T i+1
wall.h  + T i

wall.h)/2 - (T i+1
wall.c  + T i

wall.c)/2)τ, 
where λ – heat conductivity coefficient for the wall material, δwall – wall thickness, 
Rwall – thermal resistance of fouling on the wall surfaces.  
 Solving this set of equations gives values of T i+1

wall.h, T i+1
wall.c for the next operation 

cycle calculation. 
  

Types of engine installation 
 Blitz-PRO offers three types of engine installation for transient calculations: 
wheeled vehicle, ship and stationary installation. The User can switch between these 
three options with radio-button set as it is shown on Fig. 2.7.5. 
 For wheeled vehicle the Newton’s law of motion is expressed as: 





N

j j

jj
vehvehinclvehairfr r

I
jmgmRFT

1

ε
αsin , 

where T – is the thrust force, applied by driving wheels, Ffr – total friction force, in-
cluding friction in tires, shafts and bearings of slave wheels, Rair – air drag force,  
jveh – vehicle acceleration, Ij, εj and rj – moment of inertia, angular acceleration and 
referred radius for j rotating part.     
 The rotational parts (wheels, shafts, etc) inertia consideration is made with 
multiplier βinert: 

vehveh
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42
1ρ proppropwprop Dnkp  ; 

52
2ρ proppropwprop DnkT  , 

where k1, k2 – coefficients of propeller thrust and torque respectively, ρw – water 
dencity. 

 
Fig. 2.7.7. Example of propeller performance characteristics (ηprop represents 

propeller efficiency). 
 
The ship towing resistance Rship, which include all components of resistance 

(friction, wave, wake and air drag) is given as a function with respect to the ship 
speed by .csv file (see section 1.5 and Fig. 2.7.6). 

 
The test bench case of engine installation needs minimal number of initial pa-

rameters (Fig. 2.7.8). The power of engine load Pload, which mean the power of con-
sumer is given by function: 

loadm
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loadeload n

n
PP 
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where n – engine speed.  
The Newton’s law of motion is expressed as: 
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The calculation time step influences greatly on the overall accuracy of calcula-
tions. Fig. 3.4 illustrates this relation for the test task: comparison of analytic and 
numerical computation results for incylinder pressure p at the end of adiabatic com-
pression of the air. The simple Euler method is extremely sensitive to the calculation 
time step (the calculation error rises up to ≈ 2 % at the step Δφ = 1 c.a.d), while 
Runge-Kutta methods demonstrate much more accurate results. But even for the se-
cond order implicit Runge-Kutta method change of time step from 0.1 to 1 c.a.d. 
leads to computation error rise from 0.0001 to about 0.02 % (200 times!). 

 

 
a                                                               b 

Fig. 3.4. Computational accuracy of numeric methods for the adiabatic compression 
of air test task (а – absolute scale; b – logarithmic scale for norms of accuracies):  

--○-- simple Euler method,  
--□-- fourth order Runge-Kutta method,  
--◊-- second order implicit Runge-Kutta method. 
 
Fig. 3.4 demonstrates, that in terms of numerical errors the largest reasonable 

time step is about Δφ = 2 c.a.d. for Runge-Kutta second order implicit method and 
about Δφ = 0.2 c.a.d. for simple Euler method. 

But for some processes of the cycle the computation step has to be decreased. 
These processes are: fuel injection (which can take time about 1 c.a.d. for pilot injec-
tion), fuel combustion (especially the kinetic combustion phase for diesel engines), 
scavenging period of gas exchange processes and the period of free exhaust (exhaust 
blowdown). Using for these sections of operating cycle the steps Δφ > 0.5 c.a.d. for 
Runge-Kutta is not recommended.  

The base time step for entire cycle is given by Δφbase and with Δφoverlap the User 
can set the time step for valves and ports overlap period (which means the period 
when both exhaust and intake valves/ports are opened), and for fuel injection-
evaporation-combustion period the User can change the values of Δφcomb (time step) 
and φcomb (period of time for combustion time step).  

 
Generally it is recommended to use Δφbase  = 1 c.a.d., Δφoverlap = 0.2 c.a.d., 

Δφcomb  = 0.1 c.a.d. and φcomb  = 40…70 c.a.d.  
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Table 3.1 illustrates the example of influence of mesh steps generation on the 
computational results. To define the total calculations error the equation being used: 

 
,1

2

N

xx
N

i

E
ii





  

where N – total number of engine cycle controllable parameters (air excess rato, indi-
cated efficiency, bsfc, etc), xi , xi 

E
  – values of the i-parameter for current mesh and 

etalon mesh correspondently.  
 

Table 3.1 
Mesh time steps and calculation results. 

For-stroke eight-cylinder truck diesel engine (bore 12 cm, stroke 12 cm), injected fuel 
mass per cycle qfuel = 42 mg/cycle at 1600 rpm. 

 
Param. Units Value 

Δφbase ° c.a.d. 0.1 0.2 0.5 0.5 0.5 1 1 1 1 2 2 2 2 2 

Δφoverlap ° c.a.d. 0.1 0.2 0.1 0.2 0.5 0.1 0.2 0.5 1 0.1 0.2 0.5 1 2 

Δφcomb ° c.a.d. 0.1 0.2 0.1 0.2 0.5 0.1 0.2 0.5 1 0.1 0.2 0.5 1 2 

Nnodes - 7200 3600 2220 1732 1440 1612 1117 820 720 1311 811 511 411 360 

δρcyl % 0.007 0.015 0.004 0.016 0.014 0.027 0.006 0.005 0.040 0.019 0.009 0.009 0.013 0.006 

δρres % 0.012 0.014 0.005 0.008 0.013 0.033 0.005 0.005 0.038 0.043 0.009 0.028 0.038 0.005 

δρexh % 0.005 0.014 0.004 0.015 0.012 0.009 0.005 0.002 0.034 0.027 0.008 0.010 0.013 0.016 

δPTC % 0.015 0.033 0.027 -0.010 0.044 0.035 -0.044 -0.005 -0.030 0.008 -0.015 -0.022 -0.035 -0.036

δΠk % 0.034 0.039 0.040 0.044 0.045 0.026 0.044 0.011 0.034 0.046 0.047 0.044 0.022 0.040 

Nit - 293 311 360 307 323 281 308 320 391 212 267 297 365 349 

τΣ s 292.04 146.81 125.072 79.887 67.794 78.373 57.261 48.646 55.38 51.713 42.749 34.873 37.231 32.71 

τit s 0.997 0.472 0.347 0.260 0.210 0.279 0.186 0.152 0.142 0.244 0.160 0.117 0.102 0.094 

Πcmpr - 1.5700 1.5721 1.5703 1.5726 1.5748 1.5676 1.5724 1.5747 1.5864 1.5625 1.5695 1.5758 1.5849 1.6007

α - 3.306 3.310 3.305 3.306 3.310 3.298 3.300 3.302 3.325 3.286 3.281 3.287 3.314 3.336 

ηi % 45.49 45.45 45.46 45.43 45.62 45.44 45.40 45.60 45.36 45.30 45.29 45.48 45.32 45.50 

ηm % 64.82 64.77 64.82 64.77 64.87 64.82 64.80 64.91 64.61 64.72 64.80 64.92 64.61 64.45 

bb g/(kW·h) 284.0 284.4 284.1 284.5 282.9 284.3 284.6 282.9 285.7 285.6 285.2 283.6 285.9 285.5 

Pb kW 56.80 56.72 56.77 56.69 57.02 56.74 56.68 57.02 56.46 56.48 56.55 56.88 56.42 56.50 

pmax kPa 6676.2 6663.7 6678.4 6662.6 6612.3 6670.5 6656.9 6603.0 6492.6 6659.4 6614.4 6562.8 6493.8 6485.1

tmax °С 1056.2 1052.0 1056.3 1052.5 1051.3 1057.3 1053.4 1052.7 1030.6 1059.1 1056.9 1055.1 1032.5 1009.5

tt °С 430.1 429.2 430.4 429.7 425.3 431.0 430.3 426.2 422.5 432.4 432.2 427.8 422.9 411.6 

ηcmpr.ad % 67.63 67.60 67.64 67.60 67.57 67.44 67.63 67.59 67.42 66.81 67.39 67.62 67.45 67.39 

ηe.t % 53.30 53.30 53.31 53.30 53.25 53.28 53.31 53.27 53.20 53.22 53.24 53.24 53.17 52.92 

ηtc % 36.05 36.03 36.06 36.03 35.98 35.93 36.05 36.01 35.87 35.56 35.88 36.00 35.86 35.67 

δΣ % 0.00 0.34 0.12 0.33 1.55 0.39 0.44 1.50 3.39 1.24 1.45 1.88 3.32 5.30 

In Table 3.1: Nnodes – number of computation steps, Nit – total number of itera-
tions for successive calculation, τΣ – total computational time, τit – average time per 
one iteration, δΣ – overall calculation error. 
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internal loop, which executes until the values of densities errors reach the limit (δρcyl, 
δρres, δρexh), and external loops (see Fig. 3.8). Number and purpose of these external 
loops varies depending on the current configuration of the engine and could be set by 
the User. External loops can be switch into sequence or parallel arrangement on each 
step (iteration), depending on the current conditions.  

 
Fig. 3.8. Internal and external loops of simulation algorithm. 

 
The User can set external loops for: 
1. Adjustment injected fuel mass per cycle to reach desired brake power. It is 

activated for diesel engines only by selecting this option from “Type of calculation” 
list on the main page. 

         Internal loop 

i = 0, 1…. Nnodes 

Internal core 

Set of differential equations to 
find the working gases state for 
each crank angle degree φ(i) 

δρcyl.inst < δρcyl & 
δρres.inst < δρres & 
δρexh.inst < δρexh  

δПk.inst < δПk & (or) 
pmax.inst < pmax.rate &(or) 
δPTC.inst < δPTC &(or) 
another conditions

Adjustment 

External loop (loops)



2. Adjustment fuel injection advance (spark timing advance) to limit desired 
maximum pressure in the cylinder and (or) maximum pressure rate. It is activated by 
“Adjust to maximum pressure limit & maximum pressure rate limit” checkbox on the 
“Configure solution options” window. 

3. Find conditions for turbocharger’s turbine and compressor power balance:  
3.1. The User can opt “Find Пk” to set the loop for search of the value of Пk, 

which provides the equality of compressor and turbine power, while 
turbine geometry remains the same. 

3.2. Another option is to obtain the desired value of Пk by changing the flow 
area of turbine’s waste-gate valve μFWG (by selecting “Find μFWG” op-
tion).  

3.3. Option “Find μGt” triggers the loop of adjusting turbine geometry (value 
of turbine equivalent flow area μFt for calculations without using tur-
bocharger’s performance maps or turbine reduced flow multiplier μGt 
if performance maps of turbocharger are activated) for desired level of 
Пk. 

3.4. Calculations under “Free” mode provide the fastest result, but the man-
ual adjustment of turbocharger performance to reach the compressor 
and turbine power balance is needed! 

 
For diesel engines the User can also activate automatic adjustment of fuel in-

jection parameters using the interpolation of Control maps (whip can be uploaded on 
“Transient page”). For spark-ignition engines Control maps are used to set the com-
bustion parameters of Wiebe combustion model. Usage of Control maps is activated 
by opting “Use control maps to set combustion dynamically” checkbox. 

Option “Use equation to find pressure losses dynamically” checkbox activates 
the equations for air inlet filter resistance, charge air cooler resistance and turbine 
backpressure adjustment in respect to engine air flow. 

 
“Compute Log” window activates when the User runs calculation by pressing 

“Start” button. This window displays the log of calculation on-line. It shows infor-
mation about calculation steps (iterations) in reverse order. For each step the current 
values of computation errors (which are set at “Accuracy setup” window) are dis-
played.   

The User can break off the calculations by pressing “Stop” button. The routine 
will continue iterations until it reach the closest iteration number divisible by 10 (i.e. 
10, 20, 30 … etc). 

  
The calculation also stops if:  
1. The routine finds the solution with desired values of errors. In this case the 

first raw of compute log is filled with -1.000 values. 
2. Some error occurs during calculation. In this case the error is displayed 

above compute log table. The error message contains information about current ex-
ception, which helps to understand its origin. To fix the error the User should inspect 
initial data and make necessary changes.   
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4.2. Charts and diagrams of the operating cycle 
 
The “Diagrams” page displays the number of diagrams with results of per-

formed calculations. The diagrams are thematically grouped into seven blocks and 
are displayed by clicking on one of the buttons:  

1. “Indicated diagrams”:  
 p-V diagram,  
 p-φ diagram for incylinder pressure (p_cyl), intake receiver pressure 

(p_res) and exhaust manifold pressure (p_exh), 
 T-φ diagram for incylinder temperature (T_cyl), intake receiver tem-

perature (T_res), exhaust manifold temperature (T_exh), temperature 
of gases, refluxed in the receiver (T_ZG), fresh zone (T_II (fresh)) 
and burned gases zone (T_I (burned)) temperatures; 

2.   “Combustion diagrams”: 
 heat-release diagram for burned fuel fraction (X), fuel burn rate 

(dX_comb), used heat fraction (Ksi), 
 detailed heat-release diagrams (CI-engines only) for burned fuel frac-

tion (X), fuel burn rate (dX_comb), evaporated fuel fraction (Sig-
maEv), fuel evaporation rate (SigmaEv), injected fuel fraction (Sig) 
and fuel injection rate (dSig), 

 heat-release diagrams for main and ignition fuels (Dual-fuel engines 
only); 

3.  “Gas exchange diagrams”: 
 m-φ diagram for incylinder mass (m_cyl), intake receiver mass 

(m_res), exhaust manifold mass (m_exh), burned and fresh gases 
zones masses (m_I(burned) and m_II(fresh) correspondently), mass 
of air in the cylinder (m_air), mass of fuel vapor for SI-engines 
(m_benz) and mass of gases refluxed into intake manifold (m_ZG), 

 A-φ  diagram for intake (A_int) and exhaust (A_exh) valves/ports ar-
eas; 

 dm-φ diagram for intake valves/ports mass flow rate (dm_int), ex-
haust valves/ports mass flow rate (m_exh) an refluxed gases flow 
rate (dm_ZG), 

 dm-φ diagram for intake receiver incoming flow rate (dm_resIn) and 
the outcoming mass flow from the intake receiver (dm_intSum), 

 dm-φ diagram for exhaust manifold incoming flow rate  
(dm_exhSum) and the outcoming mass flow from the exhaust mani-
fold (dm_exhOut),   

 turbocharger efficiency diagram for compressor’s (eff_compr) and 
turbine’s (eff_turb) efficiency;  

4. “Heat transfer diagrams”: 
 heat transfer diagrams for heat rate, rejected to cylinder walls (dQw), 

heat rate, rejected to piston crown (dQw_pist), heat transfer rate be-
tween fresh and burned gases zone (dQ_2zone), heat transfer rate to 
intake receiver walls (dQres), heat transfer rate to exhaust madifold 



walls (dQexh), heat transfer rate, rejected to walls from fresh zone 
(dQw_II(fresh)) and burned gases zone (dQw_I(burned));  

5. “Kinematics & dynamics diagrams”: 
 V-φ – volume diagram for the cylinder (Volume), volume of burned 

gases (V_I) and volume of fresh charge (V_II), 
 diagram for piston velocity (Piston speed) and piston acceleration 

(Piston acceleration), 
 F-φ diagram for piston force (Piston force), inertia forces (Inertia 

force) and connecting rod force (Connecting rod force), 
 F-φ diagram for normal force (Normal force), tangential force (Tan-

gential force) and radial force (Main bearing radial force); 
6.  “ Heat balance diagrams”: 

 Q-φ cylinder internal heat balance diagram for the cylinder intake en-
thalpy (I_int), cylinder exhaust enthalpy (I_exh), heat released from 
fuel burning (Q_fuel), heat rejected to cylinder walls (Q_walls), 
work performed by piston (Work), incylinder internal energy (U) and 
energy conservation accuracy (balance), 

 Q-φ receiver internal heat balance diagram for the intake enthalpy 
(I_resIN), outcoming  enthalpy (I_resOUT), heat rejected to receiver 
walls (Q_res), internal energy of the receiver gases (U_res) and en-
ergy conservation accuracy (balance), 

 Q-φ exhaust manifold heat balance diagram for the incoming enthal-
py (I_exhIN), outcoming  enthalpy (I_exhOUT), heat rejected to 
manifold walls (Q_exh), internal energy of the manifold gases 
(U_exh) and energy conservation accuracy (balance), 

 S-φ diagram for incylinder enthropy (S_cyl); 
7. “Emissions formation diagrams”: 

 NO formation diagram for NO volumetric concentration in the cylin-
der ([NO]) and NO volumetric concentration rate (d[NO]/d(c.a.d)), 

 NO formation diagram for NO mass in the cylinder (Mass_NO), 
 Soot formation diagram for soot concentration ([C]) and soot concen-

tration rate (d[C]/d(c.a.d)). 
There are some options for displaying and export of diagrams. 

 The User can switch between low-resolution and full-resolution of diagrams in 
respect to number of points for the chart. The low-resolution diagrams are displayed 
after first click on the button for diagrams block and have uniform step by crank an-
gle revolution Δφ = 1 c.a.d. (this provides 720 points charts for four-stroke and 360 
points charts for two-stroke engines). The button after been clicked is added with the 
inscription “press for full-resolution” (see number 1 on Fig. 4.2.1). The second click 
on the same button will display the charts with full resolution (total mesh size) with 
support of variable step by c.a.d. (see Fig. 4.2.2). 
 The diagrams allow zooming charts framing the desired range by mouse. The 
button “Reset zoom” returns the full scope of the chart. 

For diagrams with multiple rows the User can hide some of them by clicking 
on their names on the legend.    
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 t-τ diagrams for intake receiver temperature (t_s), the temperature after 
conpressor (t_k), exhaust manifold temperature (t_t) and the tempera-
ture after turbine (t_zt). 
 

The “Installation transient” button shows the diagrams: 
 v-τ diagram for installation speed (speed),  
 s-τ and j-τ diagrams for vehicle travel (travel) and acceleration (accel-

eration), 
 λp-τ and ηp -τ diagrams for propeller relative pitch (relative pitch) and 

propeller efficiency (efficiency), 
 diagrams for propeller thrust (thrust) and torque (torque). 

 
The “Supercharger transient” button shows the diagrams: 

 P-τ diagram for supercharger’s compressor power (Power_compr), 
turbine power in static (Power_turb) and pulsating flow, or actual tur-
bine power (Power_turb_imp) and supercharger’s speed (rpm_TC),  

 η-τ diagrams for compressor adiabatic efficiency (eff_compr), turbine 
efficiency in static (eff_turb) and pulsating flow (eff_turb_imp), 

 П-τ diagrams for compressor pressure increase ratio (П_cmpr) and tur-
bine pressure drop ratio (П_turb), 

 G-τ diagrams for intake valve/ports total flow (G_int), exhaust 
valve/ports total flow (G_exh), exhaust gases flow through the waste-
gate (G_WG) and waste-gate effective area (f_WG). 
 

The “Heat transfer transient” button shows the diagrams: 
 Q-τ diagrams for the burned fuel heat (Q_fuel), the heat, rejected to the 

cooling water/air  (Q_w), the heat rejected to the oil (Q_m), the heat 
taken from scavenge air in charge air cooler  (Q_cac),  the heat of ex-
haust gases  (Q_exh) and the heat rejected to the walls of the intake re-
ceiver (Q_int.receiver) and exhaust manifold (Q_exh.manifold). 
 

Click on the “Injection and combustion transient” button displays the diagrams: 
 φ-τ diagrams for the injection advance (Inj_start), injection duration 

(Inj_duration), the combustion start (comb_start) and duration 
(comb_duration),   

 qf-τ diagram for the fuel mass, injected per cycle (q_z), 
 diagrams for injection average pressure (press_inj) and fuel droplets 

Sauter diameter (d_32). 
 

The “Incylinder transient” button shows the diagrams: 
  p-τ diagrams for incylinder maximum pressure (press_max), fuel igni-

tion pressure (press_ignition), and the incylinder maximum pressure 
rate (dp_dfi_max),   

 t-τ diagrams for incylinder maximum average temperature 
(tempr_max), burned gases zone maximum temperature 
(tempr_I_max (burned)), fresh charge zone maximum temperature 



(tempr_II_max (fresh)) and the temperature of fuel ignition 
(tempr_ignition), 

 t-τ diagrams for walls temperatures of the cylinder head (tempr_head), 
piston crown (tempr_piston), cylinder liner (tempr_liner), intake re-
ceiver (tempr_receiver) and exhaust manifold (tempr_exhaust), 

 α-τ diagrams for average heat transfer coefficients from gases to walls 
for the cylinder (alpha_m_cylinder) and the exhaust manifold (al-
pha_m_exhaust). 

 The “Emissions transient” button shows the diagrams: 
 diagrams for incylinder concentrations of nitric oxides ([NO] cyl) and 

carbon monoxide ([CO] cyl) at the exhaust valves/ports opening and di-
agrams for exhaust manifold concentrations of nitric oxides ([NO] exh) 
and carbon monoxide ([CO] exh),   

 diagrams for specific emission of nitric oxides (g_NO) and soot concen-
tration (Soot). 

 
The User can also add the experimental diagrams or diagrams from another 

source on the corresponding charts to use these diagrams as the reference. The exper-
imental diagrams are to be imported from .csv file (see section 1.5) via the interface, 
marked 2) on Fig. 4.3.1. Before import the User should select the parameter for im-
post with the selection list, marked 1) on Fig. 4.3.2. 

The options of diagrams zooming and exporting are the same as described in 
section 4.2. 
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First, execute three calculations in manual mode (without using the turbo-
charger map): rated power at 4000 rpm and Пk = 2.0, maximum torque at 1800 rpm 
and Пk = 2.0 and minimum engine speed at 900 rpm and Пk = 1.0. For these three 
cases the calculated compressor’s air mass flow is 0.19, 0.087 and 0.022 kg/s corre-
spondently.  

Fig. 5.7 shows the Garrett GT2252 turbocharger performance maps, superim-
posed with calculated three points. It is obvious, that the compressor suits perfectly 
for the engine. The turbine map is presented by manufacturer as single line, which is 
an envelope of the number of constant-speed lines. Matching of the turbine is to be 
made for the maximum torque operation. The turbine reduced flow at these condi-
tions, according to the manufacturer’s manual is: 
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 From Fig. 5.7 is seen, that the turbine has too big equivalent nozzle area, so 
the supercharged air pressure at 1800 rpm will be less, then 200 kPa. 

 

Fig. 5.7. Garrett GT2252 turbocharger performance maps (Garret product catalogue). 
  

Presented turbocharger performance maps must be converted to .tmap file and 
uploaded to the Project. Calculation of three basic modes of engine operation (rated 
power, maximum torque and minimum speed) with activated turbocharger’s perfor-
mance maps will help to adjust the maps precisely, using the multipliers.  
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